META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
نویسندگان
چکیده مقاله:
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for embedding graphs in the plane. The algorithms consist of Artificial Bee Colony algorithm, Big Bang-Big Crunch algorithm, Teaching-Learning-Based Optimization algorithm, Cuckoo Search algorithm, Charged System Search algorithm, Tug of War Optimization algorithm, Water Evaporation Optimization algorithm, and Vibrating Particles System algorithm. The performance of the utilized algorithms is investigated through various examples including six complete graphs and eight complete bipartite graphs. Convergence histories of the algorithms are provided to better understanding of their performance. In addition, optimum results at different stages of the optimization process are extracted to enable to compare the meta-heuristics algorithms.
منابع مشابه
On the Orchard crossing number of complete bipartite graphs
Let G be an abstract graph. Motivated by the Orchard relation, introduced in [3, 4], we have defined the Orchard crossing number of G [5], in a similar way to the well-known rectilinear crossing number of an abstract graph G (denoted by cr(G), see [1, 8]). A general reference for crossing numbers can be [6]. The Orchard crossing number is interesting for several reasons. First, it is based on t...
متن کاملMixed cycle-E-super magic decomposition of complete bipartite graphs
An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) + ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...
متن کاملMixed cycle-E-super magic decomposition of complete bipartite graphs
An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ∑νεV (H) f(v) + ∑νεE (H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥...
متن کاملMonotonicity for Complete Graphs and Symmetric Complete Bipartite Graphs
Given a graph G, let fk be the number of forests of cardinality k in G. Then the sequence (fk) has been conjectured to be unimodal for any graph G. In this paper we confirm this conjecture for Kn and Kn,n by showing that the sequence for Kn is strictly increasing (when n ≥ 4) and the sequence for Kn,n is strictly increasing except for the very last term. As a corollary we also confirm the conje...
متن کاملOn the Orchard Crossing Number of the Complete Bipartite Graphs Kn,n
We compute the Orchard crossing number, which is defined in a similar way to the rectilinear crossing number, for the complete bipartite graphs Kn,n.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 1
صفحات 35- 51
تاریخ انتشار 2020-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023